Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein.

نویسندگان

  • Hideki Kinoshita
  • Yui Sohma
  • Fumika Ohtake
  • Mitsuharu Ishida
  • Yasushi Kawai
  • Haruki Kitazawa
  • Tadao Saito
  • Kazuhiko Kimura
چکیده

Heavy metals cause various health hazards. Using lactic acid bacteria (LAB), we tested the biosorption of heavy metals e.g. cadmium (Cd) (II), lead (Pb) (II), arsenic (As) (III), and mercury (Hg) (II). Cd (II) sorption was tested in 103 strains using atomic absorption spectrophotometery (AAS). Weissella viridescens MYU 205 (1 × 10(8) cells/ml) decreased Cd (II) levels in citrate buffer (pH 6.0) from one ppm to 0.459 ± 0.016 ppm, corresponding to 10.46 μg of Cd (II). After screening, 11 LAB strains were tested using various pH (pH 4.0, 5.0, 6.0, 7.0) showing the sorption was acid sensitive; and was cell concentration dependent, where the Cd (II) concentration decreased from one ppm to 0.042 (max)/0.255 (min) ppm at 1 × 10(10) cells/ml. Additionally, the biosorption of Pb (II), As (III), and Hg (II) were tested using an inductively coupled plasma mass spectrometer (ICP-MS). The Hg (II) concentration was reduced the most followed by Pb (II) and As (III). Many of the bacterial cell surface proteins of W. viridescens MYU 205 showed binding to Hg (II) using the Hg (II) column assay. Having a CXXC motif, a ∼14 kDa protein may be one of the Hg (II) binding proteins. LAB biosorption may aid the detoxification of people exposed to heavy metals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biosorption of Lead and Copper by Heavy Metal Resistance Bacterium using Fourier Transform Infrared Spectrophotometer (FT IR)

Abstract Background and Objectives: Contamination of environment to lead and copper is rising due to human activities. One of the best methods to remove heavy metals from the environment is bacterial remediation. This study aimed to isolate bacteria and investigate the mechanism of lead and copper bioremediation. Material and Methods: Heavy metal resistant bacteria were isolated from contaminat...

متن کامل

Isolation and Identification of Heavy Metal Resistant Bacteria from Industrial Wastewaters in Guilan Province

Heavy metal pollution by natural factors is a world-wide phenomenon. Release of large quantities of heavy metals without handling proper processes that could decrease the concentration of such a material is a hassle that makes strains resistant to these heavy metals apart from entering into human food chain. In this research, wastewater of four firms in Guilan province such as Foolad, Risandegi...

متن کامل

Isolation and Identification of Heavy Metal Resistant Bacteria from Industrial Wastewaters in Guilan Province

Heavy metal pollution by natural factors is a world-wide phenomenon. Release of large quantities of heavy metals without handling proper processes that could decrease the concentration of such a material is a hassle that makes strains resistant to these heavy metals apart from entering into human food chain. In this research, wastewater of four firms in Guilan province such as Foolad, Risandegi...

متن کامل

Enhanced Bioadsorption of Cadmium and Nickel by E. coli Displaying A Metal Binding Motif Using CS3 Fimbriae

Display of peptides on the surface of bacteria offers many new and exciting applications in biotechnology. Fimbriae is a good candidate for epitope display on the surface of bacteria. The potential of CS3 fimbriae of enterotoxigenic E. coli as a display system has been investigated. A novel cell surface display system with metal binding property was developed by using CS3 fimbriae. Short metal ...

متن کامل

Enhanced mercury biosorption by bacterial cells with surface-displayed MerR.

The metalloregulatory protein MerR, which exhibits high affinity and selectivity toward mercury, was exploited for the construction of microbial biosorbents specific for mercury removal. Whole-cell sorbents were constructed with MerR genetically engineered onto the surface of Escherichia coli cells by using an ice nucleation protein anchor. The presence of surface-exposed MerR on the engineered...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Research in microbiology

دوره 164 7  شماره 

صفحات  -

تاریخ انتشار 2013